3 (Sem-4/CBCS) MAT HC 2

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4026

(Numerical Methods)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Name the three basic components of an algorithm.
 - (b) Show $\nabla E \equiv \Delta$.
 - (c) Write down the Lagrangian linear interpolation formula at the points x_0 and x_1 with corresponding function values f_0 and f_1 .

- (d) What is the order of convergence of secant method?
- (e) The approximation formula for finding the derivative at x_0 given by

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi),$$
$$x_0 < \xi < x_{0+h}$$

is a suites and as a

- (i) backward difference approximation formula of first order of approximation
- (ii) forward difference approximation formula of second order of approximation
- (iii) forward difference approximation formula of first order of approximation
- (iv) None of the above (Choose the correct option)
- (f) What is numerical integration? What is its general form?
- (g) Name a method for approximating a solution to an initial value problem.

- 2. Answer the following questions: $2\times4=8$
 - (a) Compute the following limit and determine the rate of convergence $\lim_{x\to 0}\frac{e^x-1}{x}.$
 - (b) Prove $(I + \Delta)(I \nabla) \equiv I$.
 - (c) Show that LU decomposition of a matrix is unique up to scaling by a diagonal matrix.
 - (d) Find the approximate value of $\int_{0}^{1} \frac{dx}{1+x}$ by Simpson's rule.
 - 3. Answer any three: $5\times 3=15$
 - (a) Construct an iteration function corresponding to the given function $f(x) = x^3 x^2 10x + 7.$

3

Use the fixed point iteration scheme with initial approximation as $P_0 = 1$ and perform three iterations to approximate the root of f(x) = 0.

Using the data given below form the divided difference table and use it to construct the Newton form of the interpolating polynomial:

$$x -1 0 1 2$$

 $y 5 1 1 11$

Use four iterations of Newton's method to approximate the root of the equation

$$f(x) = x^3 + 2x^2 - 3x - 1$$

in the interval (1, 2) starting with an initial approximation of $P_0 = 1$.

Derive the second order central difference approximation for first derivative including error term given by

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f'''(\xi)$$

(e) Name the measures by which errors are quantified. Write down the expressions for the same.

4

(ii) Prove that $\Delta^n f(x_i) = (E - I)^n f(x_i)$

Answer any three: $10 \times 3 = 30$

- (a) What is Theoretical Error Bound ? Show that the Bisection Method for approximating a root of the equation f(x) = 0 always converges. Find the order of convergence of the Bisection Method. 1+6+3=10
- (b) Verify that the equation $x^{3} + x^{2} - 3x - 3 = 0$ has a root in the interval (1, 2). Given that the exact root is $x = \sqrt{3}$, perform the first three iterations of the Regula-Falsi method. What is the computable estimate for $|e_n|$, the error obtained in nth step by this method. Verify that the absolute error in the third approximation satisfies the error estimate. 1+6+3=10
- What is an interpolating polynomial? Determine the interpolation error when a function is approximated by a constant polynomial. Mention an advantage and a disadvantage of Lagrangian form of the interpolating polynomial. Derive the Lagrangian interpolating polynomial for the given data: 1+2+2+5=10

$$x$$
 -2 -1 0 1 2 3 y 39 3 -1 -3 -9 -1

(d) What are two different classes of methods for solving a linear system of equations. Name one method of each type. What do you mean by an LU decomposition of square matrix A.

Solve the following system using LU decomposition: 1+1+8=10

$$2x_1 + 7x_2 + 5x_3 = -4$$
$$6x_1 + 20x_2 + 10x_3 = -16$$
$$4x_1 + 3x_2 = -7$$

- (e) (i) Derive the basic Trapezoidal rule for integrating $\int_a^b f(x)dx$.
 - (ii) Use appropriate first order approximation formulas to find derivatives of the values of f(x) at the points x = 0.5, x = 0.6 and x = 0.7.

x	f(x)	f'(x)
0.5	0.4794	5
0.6	0.5646	?
0.7	0.6442	?

What is the basic problem that is solved by Euler's method? Derive Euler's method. Given that the exact solution to $\frac{dx}{dt} = \frac{t}{x}$ is $x(t) = \sqrt{t^2 + 1}$, find the absolute error at each step that is obtained by solving

$$\frac{dx}{dt} = \frac{t}{x}$$
, $0 \le t \le 1.0$, $x(0) = 1$, $h = 0.5$
by Euler's method. $1+4+5=10$

7